An Implementation of Six Sigma in Aluminum Pipe Welding

Ahmed M El-Kassas, Ibrahim Sabry^{*}, Mohamed ElWakil

Department of Production Engineering, Faculty of Engineering, Tanta University, Egypt

Article Info

Article history: Received 02 April 2017 Received in revised form 20 May 2017 Accepted 28 May 2017 Available online 15 June 2017

Keywords: FSW, Six Sigma, DMAIC, pipe welding, tensile stress

Abstract

This paper presents a novel welding quality evaluation approach based on the analysis by the response surface methodology and controlling the process capability of the friction stir welding (FSW) process of pipes. This method has been implemented in an experimental work developed by alternating the FSW process main parameters: rotation speed, pipe wall thickness and travel speed. Different samples were friction stir welded using ranges of 485-1800 rpm, 4-10 mm/min and 2-4 mm for the rotation speed, the travel speed and the pipe wall thickness respectively. DMAIC (Define, Measure, Analyze, Improve, Control) methodology was used as an approach for analyzing the attachment potency and technical commonplace demand of the FSW process. The analysis controlled the tensile strength of the Al 6061 friction stir welded joints. The study determined the optimum values from the corresponding range for the parameters to get the best tensile strength.

1. Introduction

Six Sigma is a well-structured methodology that concentrates on decreasing variation, measuring defects and beneficent the quality of products, processes, and services. Six Sigma methodology was primarily progressing by Motorola in the 1980s and it targeted a difficult aim of 3.4 parts per million defects [1, 2]. Six Sigma has been on an unbelievable run, manufacture important savings to the under the most line of many large and small organizations [3].

Enforcement of quality initiatives in any manufacturer leads to improvements in the performance of the product through the generation of high-quality properties, and improved efficiency. The DMAIC (Define, Measure, Analyze, Improve, Control) approach has been followed here to control the defects of under accepted level for the mechanical properties of the friction stir welded joints. Six Sigma is a registration of variation in the sense of standard deviation. For a stable process parameter should be in appropriate limits. Six Sigma, a statistically-based quality improvement program, helps to improve welding processes by reducing the leak, welding undercut, blowholes and incomplete weld related to poor quality, and by benefiting the efficiency and effectiveness of welding processes.

Tungsten inert gas (TIG) welding operation variables were optimized by Six Sigma DMAIC [4]. Six Sigma succeeded in improving the process performance leading to more utilization of resources, minimizing defects and variations by maintain a non-alternating level of quality. Whilst in [5] the oxidation defect reduction was considered in a nuclear plant application. DMAIC technology under Six Sigma is used for considering the tube welding parameters for controlling the mechanical properties of the joint produced [3]. The welding pressure, welding speed and strip thickness were varied to control the yield and tensile strength for the steel tube welding process. Also, for the welding assembly process of automotive exhaust system, Six Sigma DMAIC has been applied [6]. The results were minimizing the defects of biting edge and stomata by controlling the process parameters of welding torch angle, welding speed and argon flow. The level of quality was raised by near 130% based on the standard deviation measure.

*Corresponding Author, E-mail address: ibraheem.sabry@yahoo.com All rights reserved: http://www.ijari.org For submerged arc welding process, Six Sigma controlled the shear strength of welded joint by solving the variation problem arises during the process [7].

Based on literature, the work on an implementation of Six Sigma for the process of frication stir welding (FSW) does not exist to the best of our knowledge. The aim of this paper is the application of the Six Sigma approach to eliminate defect concerning the tensile strength, elongation, and hardness of an aluminum pipe friction stir welded.

2. Research Methodology

This department expounds the methodology adopted for this case study. Any scientific implementing of innovating a system needs to start with some framework and outline. This framework and outline of implementing were imaginary to procure answers to research questions in the research design [8] as DMAIC (Define, Measure, Analyze, Improve, Control) method was implemented. This case study is performed to determine the FSW parameters values that lead to an optimum produced joint.

3. Case study

3.1 Define

FSW is a joining process, a solid state one, performed by plastic deformation using a unconsumable special geometry tool (Figure 1). The source of welding heat is the friction between the tool and the two base metal to be welded. The FSW process is defined and affected by several parameters. Tool rotation speed, tool geometry and travel speed are such examples. For further information about the FSW process, check Ref. [9]. Three parameters only are considered in this paper, the tool rotation speed (n), the travel speed (s) and the pipe wall thickness (t).

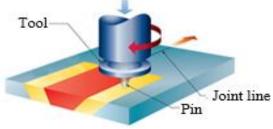


Fig.1 The FSW process

3.2 Measure

There are many measures of the mechanical properties that can be used for evaluating the FS welded joints. In this paper, Tensile Test was used for measuring the tensile strength of the FS welded joint. As, the tensile strength is a major key performance for the FS welded joints [10]. Producing FSW joints for pipes rather than welding plates is considered. All the pipes were made of Al 6061 material that were welded by the FSW process at different values of the considered parameters. The rotation speed (n), the travel speed (s) and the pipe wall thickness (t) associated with their corresponding levels are indicated in Table 1. General full factorial design was established for designing the experiments. For each pipe wall thickness, a group of 18 joints were FS welded and used as instances for measure and further analysis,

Table 1. Levels of the FSW process parameters

Parameter	Levels						
	1	2	3	4	5	6	
n (rpm)	485	710	910	1120	1400	1800	
s (mm/min)	4	8	10	-	-	-	
t (mm)	2	3	4	-	-	-	

3.3 Analyze

The output of the measure process was three groups of date, each group represented the tensile strength of each thickness pipe joint at different values of tool rotation speed (t) and travel speed (s). Whether the parameters considered has a relative effect on the tensile strength (σ) of the FS welded joint or not is needed to be resolved. This can be performed by applying the analysis of variance (ANOVA) [11]. ANOVA is based on calculating the F value for each parameter (based on the F-test). When the parameter's Fvalue is high, it means it has a significant effect of the response considered (the response here is the tensile strength) [12].

Table 2 shows the results of ANOVA on the tensile strength (σ) of the FS welded joints. From the results of the ANOVA, All the three parameters have a high value of F-value and also, their corresponding P-values are < 0.0001 (not included in Table 2). So, the tool rotation speed (n), travel speed (s) and the pipe wall thickness (t) have significant effects on the tensile strength (σ) of the welded joints.

Table 2. Results of ANOV	Αc	on	σ
--------------------------	----	----	---

Parameter	DF	Adj SS	Adj MS	F-Value
n	5	14174.1	2834.82	849.81
S	2	644.6	322.32	96.62
t	2	1692	846.01	253.61
Error	44	146.8	3.34	
Total	53	16657.6		

3.4 Improve

Response surface methodology (RSM) is one of the most multivariate techniques for optimization. It simply relates the experimental work to optimize the levels of the parameters to obtain the optimal objective performance (response) [13]. As three parameters of the FSW process (n, s, t) were considered for optimizing the tensile strength (σ) of the FS pipe welded joints, RSM were used as an analysis approach. However, the pipe wall thickness (t) can't be considered as a process parameter.

Figures 2 to figure 4 represents the influence of the interaction between the rotation speed (n) in rpm and the

travel speed (s) in mm/min at each pipe wall thickness (t) in mm on the tensile strength (σ) in MPa.

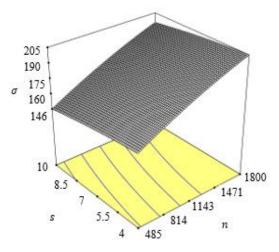


Fig. 2 Influence of the interaction between n and s at t_1 on the tensile strength σ

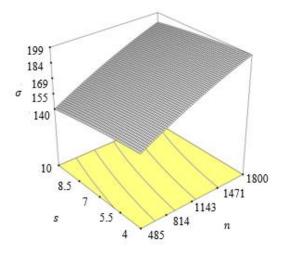


Fig. 3 Influence of the interaction between n and s at t_2 on the tensile strength σ

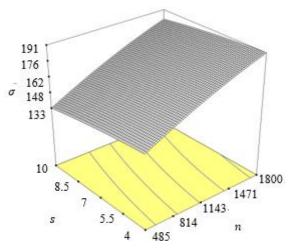


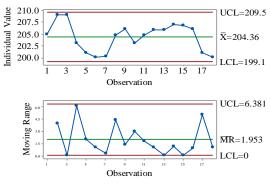
Fig.4 Influence of the interaction between n and s at t_3 on the tensile strength σ

Generally, the pipe wall thickness (t) is selected initially based on design consideration and can't be further changed. So, the analysis was based on getting the best response value σ by optimizing n and s at t₁, t₂ and t₃, where t₁ = 2 mm, t₂ = 3 mm and t₃ = 4 mm.

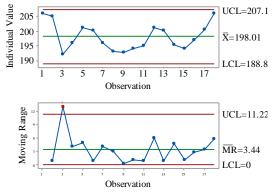
3.5 Control

As stated in section 3.4 by deducing that the highest values of tensile strength (σ), in all experiments performed, were at the maximum n of value 1800 rpm and minimum s of value 4 mm/min. So, using these values for the FSW parameters n and s respectively should led to the maximum tensile strength of the FS welded joint. Although the FSW process under these parameters' values need to be controlled.

Further experiments have been conducted with FSW process parameters values at n = 1800 rpm and s = 4 mm/min for the three pipe wall thickness valuest₁, t₂ andt₃. Table 3 summarize the statistical measures of the two group of experiments performed. The measured values are the tensile strength (σ) for each instance. Initial experiments refer to different n and s as stated earlier where fixing the values of n and s to be 1800 rpm and 4 mm/min is the characteristic of the further experiments


Table 3. Statistical measures of FSW experiments

Measure	Initial experiments			Further experiments		
	t ₁	t ₂	t ₃	t ₁	t ₂	t ₃
Mean	175.66	168.72	161.94	205.18	197.73	192.71
SD	17.13	17.38	16.87	2.78	4.19	2.14


Table 3 demonstrates obviously the effect of using the optimum value of n = 1800 rpm and s = 4 mm/min that yield the highest values of σ for the welded pipe joint. However, controlling the FSW process is needed to be confident about this demonstration.

Controlling Control Charts are graphical tools that helps determine if a process is "in control or not". There are a wide range of control charts that can't be applied for controlling such a process [14]. A statistical process control (SPC) chart: I-MR chart was used for the control phase. I-MR measure the variability of the given output attribute where 'I' refers to the individual data where 'MR' is the moving range, the absolute difference between every two successive values of the output attribute.

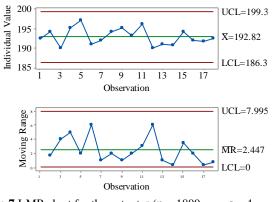

Figures 5-7 are the I-MR charts of the joint tensile strength (σ) for these further experiments. Figure 5, 6 and 7 refers to thicknesses t_1 , t_2 and t_3 respectively. The variations through the FSW process have been decreased obviously with high values of the tensile strength for the produced pipe welded joints.

Fig.5 I-MR chart for the output σ (n = 1800 rpm, s = 4 mm/min and t₁)

Fig.6 I-MR chart for the output σ (n = 1800 rpm, s = 4 mm/min and t₂)

Fig.7 I-MR chart for the output σ (n = 1800 rpm, s = 4 mm/min and t₃)

4. Conclusions

Experimental investigation and Six Sigma carried out on FSW welded pipe joints of Al 6061 yielded to improving the tensile strength of the produced joint for each pipe wall thickness considered. This analysis will be very much useful as a reference guide of friction stir welding in aluminum 6061 pipe material for this range of process parameters. For the FSW parameters ranges considered, the tool rotation speed is directly proportional to the tensile strength of the produced welded pipe joints. However, the lower the travel speed is, the higher the tensile strength.

References

- [1] S Soni, R Mohan, L Bajpai, SK Katare. Reduction of welding defects using Six Sigma techniques, International Journal of Mechanical Engineering and Robotics Research, 2(3), 2013, 404-412.
- [2] P Aravinth, SP Subramanian, SG Vishnu, P Vignesh. Process failure mode and effect analysis on TIG welding process – a criticality study, International Journal of Advances in Engineering and Technology, 3(2), 2012, 746-755.
- [3] T Singh, D Kumar, P Ram. An Implementation of Six-Sigma in Steel Tube Welding: A Case Study, International Journal of Innovative Science, Engineering and Technology, 2(9), 2015, 60-64.
- [4] MMS Shinde, KH Inamdar. Reduction in TIG welding defects for productivity improvement using Six Sigma, International Journal of Technical Research and Applications, 2(1), 2014, 100-105.
- [5] S Raman, VK Raman. A Six Sigma Approach for Oxidation Defect Reduction in GTAW of a Nuclear Plant,

Proceedings of 25th IRF International Conference, May 2015, India.

- [6] GY Mu, F Wang, ZX Mi. Application of Six Sigma DMAIC methodology in Welding Assembly Quality Improvement. In Applied Mechanics and Materials, Trans Tech Publications, 395, 2013, 1099-1103.
- [7] S Soni, R Mohan, L Bajpai, SK Katare. Optimization of Submerged Arc Welding Process Using Six Sigma Tools, International Journal of Modern Engineering Research, 3(3), 2013, 1690-1696.
- [8] S Krunal, A Pathak. Reduction of Non Confirmative Rate of Bearing Rings Using Six Sigma Methodology, International Journal for Research in Applied Science and Engineering Technology, 2(5), 2014, 532-539.
- [9] AM Khourshid, I Sabry. Friction stir welding study on aluminum pipe, International Journal of Mechanical Engineering and Robotics Research, 2(3), 2013, 31-339.
- [10] DG Hattingh, C Blignault, TI Van Niekerk, MN James. Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool, Journal of Materials Processing Technology, 203(1-3), 2008, 46-57,.
- [11] TR Lin. Experimental design and performance analysis of TiN-coated carbide tool in face milling stainless steel, Journal of Materials Processing Technology, 127(1), 2002, 1-7.
- [12] WP Yang, YS Tarng. Design optimization of cutting parameters for turning operations based on the Taguchi method, Journal of materials processing technology, 84(1-3), 1998, 122-129.
- [13] MA Bezerra, RE Santelli, EP Oliveira, LS Villar, LA Escaleira. Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76(5), 2008, 965-977.
- [14] S Bersimis, S Psarakis, J Panaretos. Multivariate statistical process control charts: an overview, Quality and Reliability engineering international, 23(5), 2017, 517-543.